Involvement of Molecular Oxygen in the Enzyme-Catalyzed NADH Oxidation and Ferric Leghemoglobin Reduction.

نویسندگان

  • L Ji
  • M Becana
  • R V Klucas
چکیده

Ferric leghemoglobin reductase (FLbR) from soybean (Glycine max [L.] Merr) nodules catalyzed oxidation of NADH, reduction of ferric leghemoglobin (Lb(+3)), and reduction of dichloroindophenol (diaphorase activity). None of these reactions was detectable when O(2) was removed from the reaction system, but all were restored upon readdition of O(2). In the absence of exogenous electron carriers and in the presence of O(2) and excess NADH, FLbR catalyzed NADH oxidation with the generation of H(2)O(2) functioning as an NADH oxidase. The possible involvement of peroxide-like intermediates in the FLbR-catalyzed reactions was analyzed by measuring the effects of peroxidase and catalase on FLbR activities; both enzymes at low concentrations (about 2 mug/mL) stimulated the FLbR-catalyzed NADH oxidation and Lb(+3) reduction. The formation of H(2)O(2) during the FLbR-catalyzed NADH oxidation was confirmed using a sensitive assay based on the fluorescence emitted by dichlorofluorescin upon reaction with H(2)O(2). The stoichiometry ratios between the FLbR-catalyzed NADH oxidation and Lb(+3) reduction were not constant but changed with time and with concentrations of NADH and O(2) in the reaction solution, indicating that the reactions were not directly coupled and electrons from NADH oxidation were transferred to Lb(+3) by reaction intermediates. A study of the affinity of FLbR for O(2) showed that the enzyme required at least micromolar levels of dissolved O(2) for optimal activities. A mechanism for the FLbR-catalyzed reactions is proposed by analogy with related oxidoreductase systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic and nonenzymatic mechanisms for ferric leghemoglobin reduction in legume root nodules.

Evidence is presented for the operation in nodules of at least four systems for restoring functional ferrous leghemoglobin (LB2+) from its inactive, ferric form. (i) Reduction of ferric leghemoglobin (LB3+) by a reductase. The enzyme is a flavoprotein of 100 kDa with two equally sized subunits andexhibits a Km of 9 microM for soybean LB3+ component a and a Km of 51 microM for NADH. NADPH is onl...

متن کامل

Oxidation and reduction of leghemoglobin in root nodules of leguminous plants.

Reactions involving changes that affect the function of leghemoglobin (Lb) are reviewed. The chemical nature of Lb and conditions inside nodules, such as slightly acid pH and the presence of metal ions, chelators, and toxic metabolites (nitrite, superoxide radical, peroxides), are conducive for oxidation of ferrous Lb (Lb(2+)) or its oxygenated form (LbO(2)) to nonfunctional ferric Lb (Lb(3+)) ...

متن کامل

Oxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2

The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.

متن کامل

Oxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2

The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.

متن کامل

Enzymatic and nonenzymatic mechanisms for ferric leghemoglobin reduction in legume root nodules (flavins/ferric leghemoglobin reductase/nitrogen fixadtion/physiological reductants)

Evidence is presented for the operation in nodules of at least four systems for restoring functional ferrous leghemoglobin (Lb2+) from its inactive, ferric form. (i) Reduction offerric leghemoglobin (Lb3+) by a reductase. The enzyme is a flavoprotein of 100 kDa with two equally sized subunits and exhibits a K. of 9 ,uM for soybean Lb3+ component a and a K. of 51 ,IM for NADH. NADPH is only 30% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 1992